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This paper describes a finite-difference method to approximate a Schrodinger equation with 
a power non-linearity. A special case of this equation is currently used to model the 
propagation of a laser beam in a plasma. The main feature of the method we present is that it 
satisfies a discrete analogue of some important conservation laws of the equations. We present 
numerical results which show in particular the propagation and the formation of solitons in 
the one-dimensional case, 

1. INTRODUCTION 

We consider in R”, a complex-valued function U(X, t) solution of the f~iiowi~g non- 
iinear Schr6dinger equation. 

p > 1, A real, 

where 4(x) is a sufficiently smooth function. This equation has been extensively 
studied in the past few years. For the sake of completeness we rapidly recall the main 
results concerning existence of solutions to Eq. (1.1). (We refer the reader to 
(81, where many important results are stated and sketch of most proofs is given.) 
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Multiplying (1.1) by U and taking the imaginary part, then multiplying by X/at 
and taking the real part, one easily obtain two standard conservation laws, namely, 

and 
1 ( u 1’ dx = constant (1.2) iRn 

(1.3) 

This shows that the case of negative A may present some problems, because E can 
remain constant with neither of liRn i 1 Vuj2 dx or JR,, lu Ipt ’ dx remaining bounded. 
Indeed the behaviour of solutions depends heavily on the sign of il, the parameter p 
and the space dimension n. 

(i) For ;Z > 0, p < co, solutions exist for all t; 

(ii) For 1 > 0, n > 2, p < 1 + 4/(n - 2) or A < 0, p < 1 + 4/n solutions exist 
for all t, with some regularity properties; 

(iii) For 1 < 0, p > 1 + 4/n, a smooth solution cannot exist for any t if 
E(4) < 0. 

Case (iii) provides a precise initial condition for the self-focusing of a laser beam. 
Finally let us recall that for 1 < 0, IZ = 1 there exists a four-parameter family of 
solitary wave solutions 

u(x, t) =f(x - ct) exp(ig(x - bt)), 

f”-‘(x) = _ cp -+ ‘>a sech2 
2a 

a=f G-b >O. [ 1 
(1.4) 

The case y1= 1, p = 3,1 < 0 has been studied in detail by Zakharov and Shabat [ 121. 
Solitary waves of (1.4) are called solitons in this case and they can be written as 

4x, t) = 2nfexp{ig}, 
f = sech@y(x -xc) + Sq@), 

g = -2& - 4(l2 - q’)t + 4, 

(1.5) 

where q, e, 4, x, are parameters. 
From these points, one must observe that the behavior of the solutions is quite 

intricate. In order to get reliable numerical solutions, one should develop numerical 
schemes satisfying the basic conservation laws that are the cornerstone of the theory. 

We shall develop, in the next section, a finite-diffesence scheme in which discrete 
analogues of conservation laws (1.2), (1.3) will be satisfied. It has long been known 
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that discrete conservation laws are an important feature in computing $~~o~~ 
solutions of hyperbolic equations. For instance, Zabusky and Kruskal [II ] have 
proposed a numerical method for the closely related Korteweg-de Vries ( 
equation in which a discrete invariant existed. The K-dV equation also has 
solutions. 

In the last few years, the treatment of Eq. (1.1) and rel equations has been a 
much-studied topic. Spectral and pseudo-spectral methods been very popular in 
this respect. Very efficient codes can then be obtained using FFT methods. Such 
methods have been developed by Fleck er al. [3] for the linear Ma~weil eq~~tio~s 
and also by Lax et al. 161, where a FFT is allied with a ~r~di~tor~orrecto~ time 
marching scheme. We also refer the reader to a very interesting work by Abe and 
Inoue [I 1: where many finite-difference methods and a spectral method 
for the computation of solutions to the K-dV equation. Fornbetg and 
use a pseudo-spectral method for the Schriidinger equation and res 
presented in Yuen and Ferguson [lo]. A finite-difference metho for the S~b~~~~~~er 
equation is described in Degtyarev and Krylov [2]. They consi er the case of cyk 
dricai coordinates with axial symmetry and a Cagrangian for iation leading to a 
hydrodynamim analogy. This method also displa conservation properties. A 
treatment of a related problem can also be found in ramzin [5]. 

We are interested in expanding waves and the ~e~iodi~i~~ condition of spectral 
methods is not suited to our needs. We choose to use a ~~it~-d~ff~re~ce method in 2 
variable domain. 

2. NUMERICAL SCHEME 

We shall first introduce a slightly more general form of Eq. (1.1) i~~lu~~~ a 
dissipation term and some eventual non-homogeneity in the propagation medium. 
Consider with Y = /xl: 

i~+ivu-L4u+au(lu~“t~ -I- ar) = 0, (2.1) 

u(x, S) = (b(x), 

Conservation laws (1.2) and (1.3) become 

(2.2) 

where r = 1x1. 
We now consider a special finite-difference scheme. For simplicity we present only 

the one-dimensional case. Extension to a higher dimension involves only the 
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treatment of the --Au term, a standard and straightforward procedure. Other terms do 
not contain derivatives and their treatment is the same in any dimension. 

The treatment of non-linear terms is very similar to the one presented in Strauss 
and Vazquez [9] for the related Klein-Gordon equation. Our scheme is second order 
accurate in both space and time. It is an implicit scheme and not a leap-frog one, as 
is often the case in the treatment of hyperbolic equations. The reason for this is to 
obtain discrete invariants. 

Let dx and At be respectively the space and time discretization mesh sizes and let 
us denote the value of u at the jth node and at time n At. As we consider the whole 
space, j varies from --co to +cc that is j E Z, where Z is the set of all positive and 
negative integers. 

We denote by u” (without subscript) the vector {uJ, j E Z}. Let u” be given; we 
shall compute untl by solving for IZ > 0, j E Z 

?2+1 
i uj - u; 

At + iv IuJ”I’- lq* 
IuJ”I’+ lf4I” @p +z) 

1 Uj”+‘l’- -- 
2 I 

2ui”“+uj”_+, + uJ+I-2uJ+uJ-, 

lP42 lAxI i 

A 
f- 

P+l I 
'"in+l'p+l-Ju~lp+l +ajAx (u"+l+u?)=O 

Iuj”“l’ - IUJI’ 1 
J J * 

(2.4) 

The value of uj” may be computed from d(x), for instance, by 

u; = qS(j Ax) 

or 

u; = (l/Ax) 1’ #(x) dx, a=(j-t)Ax, b=(j+;)Ax (2.5) 
a 

The only non-evident features of (2.4) are in the second and fourth terms. The reason 
for this strange way of discretizing such simple terms as ivu or d ]uIp-’ u will become 
clear in the following and lies in our desire to obtain discrete conservation laws 
analogous to (2.2) and (2.3). 

Remark 2.1. If p is an odd integer larger than 3, it is easy to check that our 
discretization of the non-linear terms is consistant with ;1 ]uJp-’ u and indeed simple 
computational forms can be derived. In the important particular case p = 3, we get 
the obvious formula. 

! 
b~+‘l* + IUJI” + ajAx (u;+’ +uj”) 

2 t 2 

as the fourth term of (2.4). We now show that this scheme satisfies the discrete 
analogues of (2.2), (2.3). 
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PROPOSITION 2.1. For all n > 0, 

(2.7) 

= constant (2.8) 

Proof. In order to get (2.7) one multiplies (2.4) by G:” + UJ, where z? is the 
complex conjugate of U. One sums overj and takes the imaginary part. Explicitly, the 
first term gives 

and the second term 

Taking the sum over j and keeping only the imaginary part, one obtains 

which is nothing but (2.7), for one can easily check that the last two terms are real. 
In order to obtain the second conservation law: one multiplies (2.4) by CJ’ 1 - z;iin, 

sums over j and take the real part. 
The first two terms are purely imaginary and therefore drop out of the su 

third term (multiplied by am) becomes. 

As the sum ranges over Z, one may change j to j + I in the second term of (2.1 I) to 
obtain 
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Taking the real part, this becomes 

(2.13) 

The last term gives 

x ([uJt’12 - lu;I’+ 2iIm(C~“uJ), 

and its real part provides the last term in (2.8). 

Remark 2.2. For v = 0, (2.7) is indeed strictly a conservation law. For v > 0 we 
have a second order approximation to the continuous case of (2.2). 

Remark 2.3. We have presented a finite-difference method, but it can easily be 
seen that the previous development can easily be extended to the case where the space 
discretization is done through standard conforming finite elements. Let us just 
consider again the one-dimensional case and let u: be a discrete solution belonging to 
V,, a space of continuous piecewise polynomial functions. ui at time n At, we 
compute ui + i as solution of 

i .(u;+‘- 
I 

?A;) Vh dx + iv 
s R 

+ v(u”,+’ I 
n 

+ u;) . Vu,, dx + - 
R P+l 

++j x(u;+‘+u;)v,dx=O. 
R 

(2.14) 
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It can easily be seen, using the same technique as above, that from (2.14) one has 

!’ Ju;/*dx= : ,-;; (2.15) 

+i 10u;/2 dx + (2.16) 
R 

Of course (2.14) induces for a regular mesh a finite difference scheme which is 
slightly more complex than ours. 

It is moreover highly probable that discrete conservation laws such as (2.16) and 
(2.17) could provide a firm basis to get a convergence proof for a scheme like (2.14). 
An advantage of finite elements is that one can easily obtain higher order approx- 
imations by using appropriate polynomials. ! 

3. NUMERICAL SOLUTION OF THE DISCRETE EQUATIONS 

In order to compute a solution, we must first make an additional hypotbesis about 
solutions, for it is impossible to compute on the whole real line. e must therefore 
suppose that our solution has a compact support and that it is zero outside 
interval [x0, x,$,+ r]. W e use the artificial boundary conditions w(xJ = u(x~+ r) 
would be possible to use other boundary conditions if some were availab~~~ This 
hypothesis of compact support is not exact in general. Plowever, many sol~t~o~~ 
decrease rapidly at infinity and it seems reasonable to use such an approximation. It 
must be noted that the computer program must provide a facility to vary [x0? xN+ I ] 

computations in order to follow traveling solutions like solitons. 
now write our system of non-linear equations in “matrix” form. Let A be the 

matrix associated with the discrete Laplacian operator. In the simple o~~-dime~~io~ 
case of (2.4), A is tridiagonal but this is not the case for higher Dimensions or higher- 
degree approximations. Let X denote the diagonal matrix, where the jth diagonal 
entry is j x,/ / = yi, where Xj is the (vector) coordinate of the jth node. For u” E 6” 
given, we define a mapping F,(u) from CC” to C” of which thejth ~orn~o~e~t is given 
by. 

and similarly G,(u) with 

(%@4=iv lUj12+pJ2 J 
l"jlz + l"J12 (u,-u~j if ujfuJ, 

= ivuj if ZIP = u,‘~ 
(3.2‘3 
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We can now rewrite our system (2.4) in the more compact form. 

L& (un+l - u”) + (A + n&q (“~+~u~)+G,(u”+~)+F.(u”+~)=O, (3.3) 

or equivalently, 

+ F&i”+‘) + G,(u”+~ - )- [;I-+~*] 2.P. (3.4) 

This is a non-linear system and it must be solved by some iterative technique. 
Although other possibilities should be explored, we obtained a very simple successive 
approximation method. 

Let u0 = U” be given, we compute a sequence {u,}~=~,, ... of vectors of C”, by the 
inductive relation 

up+1 = u”-F&J G,(u,) 1 . 

(3.5) 
This sequence is easily computed for it implies only the solution of a linear system 

that can be factorized once and for all. As is standard in similar cases (3.5) proved to 
be convergent when dt is small enough. 

As to the stopping test we found that a very good one was to check on unt * for the 
conservation laws (2.16)-(2.17) that are to be verified if u”” has been computed 
with sufficient accuracy. 

4. NUMERICAL RESULTS 

We present in this section a few illustrative examples of results obtained by the 
method just described. We consider 

(A) Propagation of a soliton with or without dissipation (v = 0 or v = 0.1). 
(B) Interaction of two colliding solitons. 
(C) Emergence of a soliton from a square well initial condition. 

All computations were done for 0 < t < 6, with a time step At = 0.02 and Ax = 0.1. 
In examples A and B we had -30 < x < 30 and in example C, -70 < x < 70. We 
present perspective views of the results; a curve is drawn at every 10th time step. 

EXAMPLE A. Propagation of a soliton. 
We used 601 points in [-30, +30]. We define 

u(x~, 0) = 2~ exp{ (i(--2txj + #)} sech{2r(x -x,)}, (4.1) 

with q = 0.75, c = -1, 4 = 0, x, = -5. 
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FIG. 1. Propagation of a single s&ton (u = 0). 

This is the discretization at time t = 0 of a soliton with amplitude 2q = 1.5, 
traveling with a velocity -45 = + 4 and initially centered at x, = -5. Using (4.1) the 
discrete invariants defined by (2.7) and (2.8) are respectively 3 and 0.9547I3. These 
values must remain constant for P = 0. For v > 0 the first one must decay. The result 
for v = 0 is presented in Fig. 1, which presents a perspective view of the traveling 
soliton from t = 0 to t = 6. Invariants have been kept to four digits. With v = 0.1, 
there is a strong dissipative term. The result is presented in Fig. 2. The soliton decays 
in amplitude. Small ripples begin to appear in the curves for t > 2. They are cause 
by a lack of conservation of the theoretical invariants; at t = 6, the second invariant 

FIG. 2. Propagation of a single soliton (v = 0.1). 
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FIG. 3. Intersection of two colliding solitons. 

(2.8) has decreased to ~0.85 from an initial value of 0.954. This phenomenon comes 
from the difficulties involved in the numerical handling of the term 

which contains the difference of nearly equal quantities. Other ways of treating the 
dissipative term should therefore be explored. This result clearly shows the need of 
good conservation properties to get reliable results. 

FIG. 4. Diffusion of initial square wave. 
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FIG. 5. Birth of a soliton 

EXAMPLE B: Interaction of two solitons. 
We used 601 mesh points in [-30, +30] at t = 0. 
We define 

u(xj, O) = sI(xj, O) + s?(xj, O), (4.2) 

where s, and s2 are two sblitons as in (4.1) with respective amplitude 211, = 1 and 
211, = 1-S and <, = -1; & = + 1; x,, = -15, xc2 = +S. These two solitons, traveling in 
opposite directions, collide and separate, conserving their initial shape. The ~urneri~a~ 
results are presented in Fig. 3. Invariant were conserved to five significant 

EXAMPLE C: Birth of a soliton. 
Figures 4 and 5 present the results obtained from respectively 

u(x, 0) = 1.2 if -.6 <x < + .6, 

= 0 elsewhere, 

FIG. 6. Birth of a soliton (rear view). 
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and 

u(x, 0) = 0.52 if -2.6 <X < 2.6 

=o elsewhere. 

In the first case I??, U(X, 0) dx is equal to 1.44 and in the second case to 2.70. 
Theory predicts that a soliton should appear for a value larger than 7r/2 (cf. Payre 
[4]). This is clearly seen in the numerical results: the solution of Fig. 5 fades out 
while that of Fig. 6 gives birth to a standing soliton. Figure 6 presents a rear view of 
the first steps of the computation in Fig. 5. 

6. CONCLUSION 

We developed a reliable finite difference method for the solution of non-linear 
Schrodinger equation. This method could be extended to related problems and the 
fact the discrete conservation laws are derived enables the user to easily check the 
validity of its results. A convergence proof however remains to be done. 
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